3.118 \(\int \frac{\sec (e+f x) (a+a \sec (e+f x))^{3/2}}{(c-c \sec (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=99 \[ -\frac{a^2 \tan (e+f x) \log (1-\sec (e+f x))}{c f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}-\frac{a \tan (e+f x) \sqrt{a \sec (e+f x)+a}}{f (c-c \sec (e+f x))^{3/2}} \]

[Out]

-((a*Sqrt[a + a*Sec[e + f*x]]*Tan[e + f*x])/(f*(c - c*Sec[e + f*x])^(3/2))) - (a^2*Log[1 - Sec[e + f*x]]*Tan[e
 + f*x])/(c*f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.275484, antiderivative size = 99, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.056, Rules used = {3954, 3952} \[ -\frac{a^2 \tan (e+f x) \log (1-\sec (e+f x))}{c f \sqrt{a \sec (e+f x)+a} \sqrt{c-c \sec (e+f x)}}-\frac{a \tan (e+f x) \sqrt{a \sec (e+f x)+a}}{f (c-c \sec (e+f x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(a + a*Sec[e + f*x])^(3/2))/(c - c*Sec[e + f*x])^(3/2),x]

[Out]

-((a*Sqrt[a + a*Sec[e + f*x]]*Tan[e + f*x])/(f*(c - c*Sec[e + f*x])^(3/2))) - (a^2*Log[1 - Sec[e + f*x]]*Tan[e
 + f*x])/(c*f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]])

Rule 3954

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[(2*a*c*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^(n - 1))/(b*f*(2*m +
 1)), x] - Dist[(d*(2*n - 1))/(b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x]
)^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0
] && LtQ[m, -2^(-1)]

Rule 3952

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_)], x_Symbol] :> Simp[(a*c*Log[1 + (b*Csc[e + f*x])/a]*Cot[e + f*x])/(b*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c +
 d*Csc[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec (e+f x) (a+a \sec (e+f x))^{3/2}}{(c-c \sec (e+f x))^{3/2}} \, dx &=-\frac{a \sqrt{a+a \sec (e+f x)} \tan (e+f x)}{f (c-c \sec (e+f x))^{3/2}}-\frac{a \int \frac{\sec (e+f x) \sqrt{a+a \sec (e+f x)}}{\sqrt{c-c \sec (e+f x)}} \, dx}{c}\\ &=-\frac{a \sqrt{a+a \sec (e+f x)} \tan (e+f x)}{f (c-c \sec (e+f x))^{3/2}}-\frac{a^2 \log (1-\sec (e+f x)) \tan (e+f x)}{c f \sqrt{a+a \sec (e+f x)} \sqrt{c-c \sec (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.655738, size = 134, normalized size = 1.35 \[ -\frac{a \tan \left (\frac{1}{2} (e+f x)\right ) \sqrt{a (\sec (e+f x)+1)} \left (-2 \log \left (1-e^{i (e+f x)}\right )+\log \left (1+e^{2 i (e+f x)}\right )+\left (2 \log \left (1-e^{i (e+f x)}\right )-\log \left (1+e^{2 i (e+f x)}\right )\right ) \cos (e+f x)+2\right )}{c f (\cos (e+f x)-1) \sqrt{c-c \sec (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(a + a*Sec[e + f*x])^(3/2))/(c - c*Sec[e + f*x])^(3/2),x]

[Out]

-((a*(2 - 2*Log[1 - E^(I*(e + f*x))] + Cos[e + f*x]*(2*Log[1 - E^(I*(e + f*x))] - Log[1 + E^((2*I)*(e + f*x))]
) + Log[1 + E^((2*I)*(e + f*x))])*Sqrt[a*(1 + Sec[e + f*x])]*Tan[(e + f*x)/2])/(c*f*(-1 + Cos[e + f*x])*Sqrt[c
 - c*Sec[e + f*x]]))

________________________________________________________________________________________

Maple [B]  time = 0.308, size = 251, normalized size = 2.5 \begin{align*} -{\frac{a \left ( -1+\cos \left ( fx+e \right ) \right ) }{f\cos \left ( fx+e \right ) \sin \left ( fx+e \right ) } \left ( \cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +\cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -2\,\cos \left ( fx+e \right ) \ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) +2\,\ln \left ( -{\frac{-1+\cos \left ( fx+e \right ) }{\sin \left ( fx+e \right ) }} \right ) -\cos \left ( fx+e \right ) -1 \right ) \sqrt{{\frac{a \left ( 1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }}} \left ({\frac{c \left ( -1+\cos \left ( fx+e \right ) \right ) }{\cos \left ( fx+e \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x)

[Out]

-1/f*a*(-1+cos(f*x+e))*(cos(f*x+e)*ln(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))+cos(f*x+e)*ln(-(-1+cos(f*x+e)+si
n(f*x+e))/sin(f*x+e))-2*cos(f*x+e)*ln(-(-1+cos(f*x+e))/sin(f*x+e))-ln(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e))-
ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+2*ln(-(-1+cos(f*x+e))/sin(f*x+e))-cos(f*x+e)-1)*(1/cos(f*x+e)*a*(1+
cos(f*x+e)))^(1/2)/cos(f*x+e)/(c*(-1+cos(f*x+e))/cos(f*x+e))^(3/2)/sin(f*x+e)

________________________________________________________________________________________

Maxima [A]  time = 1.59513, size = 165, normalized size = 1.67 \begin{align*} \frac{\frac{\sqrt{-a} a \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + 1\right )}{c^{\frac{3}{2}}} + \frac{\sqrt{-a} a \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} - 1\right )}{c^{\frac{3}{2}}} - \frac{2 \, \sqrt{-a} a \log \left (\frac{\sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1}\right )}{c^{\frac{3}{2}}} + \frac{\sqrt{-a} a{\left (\cos \left (f x + e\right ) + 1\right )}^{2}}{c^{\frac{3}{2}} \sin \left (f x + e\right )^{2}}}{f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

(sqrt(-a)*a*log(sin(f*x + e)/(cos(f*x + e) + 1) + 1)/c^(3/2) + sqrt(-a)*a*log(sin(f*x + e)/(cos(f*x + e) + 1)
- 1)/c^(3/2) - 2*sqrt(-a)*a*log(sin(f*x + e)/(cos(f*x + e) + 1))/c^(3/2) + sqrt(-a)*a*(cos(f*x + e) + 1)^2/(c^
(3/2)*sin(f*x + e)^2))/f

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (a \sec \left (f x + e\right )^{2} + a \sec \left (f x + e\right )\right )} \sqrt{a \sec \left (f x + e\right ) + a} \sqrt{-c \sec \left (f x + e\right ) + c}}{c^{2} \sec \left (f x + e\right )^{2} - 2 \, c^{2} \sec \left (f x + e\right ) + c^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral((a*sec(f*x + e)^2 + a*sec(f*x + e))*sqrt(a*sec(f*x + e) + a)*sqrt(-c*sec(f*x + e) + c)/(c^2*sec(f*x +
 e)^2 - 2*c^2*sec(f*x + e) + c^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))**(3/2)/(c-c*sec(f*x+e))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(a+a*sec(f*x+e))^(3/2)/(c-c*sec(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Timed out